advent_of_code_2024/
day_9.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//! This is my solution for [Advent of Code - Day 9: _Disk Fragmenter_](https://adventofcode.com/2024/day/9)
//!
//! [`parse_input`] Marks each of the entries as a [`FILE`] or [`SPACE`], along with caching their
//! position on disk, and the id of the files.
//!
//! [`calculate_checksum`] solves the puzzle, delegating to [`pack_files`] which calculates the final position of the
//! files. [`fill_space_with_fragmentation`] Is the logic for filling in disk space for part 1,
//! [`fill_space_without_fragmentation`] for part 2.

use std::collections::VecDeque;
use std::fs;
use DiskUsage::*;

/// The entry point for running the solutions with the 'real' puzzle input.
///
/// - The puzzle input is expected to be at `<project_root>/res/day-9-input`
/// - It is expected this will be called by [`super::main()`] when the user elects to run day 9.
pub fn run() {
    let contents = fs::read_to_string("res/day-9-input.txt").expect("Failed to read file");
    let disk_map = parse_input(&contents);

    println!(
        "The checksum is {}",
        calculate_checksum(&disk_map, fill_space_with_fragmentation)
    );

    println!(
        "The checksum is {}",
        calculate_checksum(&disk_map, fill_space_without_fragmentation)
    );
}

/// A file on disk
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
struct File {
    id: usize,
    pos: usize,
    size: u8,
}

impl File {
    fn new(id: usize, pos: usize, size: u8) -> File {
        File { id, pos, size }
    }
}

/// A space on disk
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
struct Space {
    pos: usize,
    size: u8,
}

/// An enum to union both types of disk usage
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
enum DiskUsage {
    FILE(File),
    SPACE(Space),
}

impl DiskUsage {
    /// A new file wrapped in the union type
    fn new_file(id: usize, pos: usize, size: u8) -> DiskUsage {
        FILE(File { id, pos, size })
    }

    /// A new space wrapped in the union type
    fn new_space(pos: usize, size: u8) -> DiskUsage {
        SPACE(Space { pos, size })
    }

    /// Access size regardless of usage type
    fn size(&self) -> u8 {
        match self {
            FILE(file) => file.size,
            SPACE(space) => space.size,
        }
    }
}

/// Turn input into alternating file/space entries. Filtering out any with size 0
fn parse_input(input: &String) -> VecDeque<DiskUsage> {
    let mut is_file = true;
    let mut pos = 0;

    input
        .chars()
        .flat_map(|char| char.to_digit(10))
        .enumerate()
        .map(|(idx, size)| {
            let usage = if is_file {
                DiskUsage::new_file(idx / 2, pos, size as u8)
            } else {
                DiskUsage::new_space(pos, size as u8)
            };

            is_file = !is_file;
            pos += size as usize;

            usage
        })
        .filter(|usage| usage.size() > 0)
        .collect()
}

/// This represents the difference between the parts.
///
/// `&mut Vec<File>`: the output file list
/// `&mut VecDeque<DiskUsage>`: the unprocessed entries in the disk usage map
/// `Space`: The leftmost space to fill
/// `File`: The file to be moved into a space
type SpaceFiller = fn(&mut Vec<File>, &mut VecDeque<DiskUsage>, Space, File) -> ();

/// Part 1 space filler - split files to fully fill in every hole
fn fill_space_with_fragmentation(
    files: &mut Vec<File>,
    usage: &mut VecDeque<DiskUsage>,
    space: Space,
    file: File,
) {
    // consume the space at the front
    usage.pop_front();

    // A file being moved will be in its final position
    files.push(File::new(file.id, space.pos, file.size.min(space.size)));

    if file.size < space.size {
        // return remaining space to the front
        usage.push_front(DiskUsage::new_space(
            space.pos + file.size as usize,
            space.size - file.size,
        ));
    } else if file.size > space.size {
        // return remainder of file to the back
        usage.push_back(DiskUsage::new_file(
            file.id,
            file.pos,
            file.size - space.size,
        ))
    }
}

/// Part 2 space filler - only move files into spaces they fit
///
/// This ignores the passed in space as the space to fill needs to be searched for.
fn fill_space_without_fragmentation(
    files: &mut Vec<File>,
    usage: &mut VecDeque<DiskUsage>,
    _space: Space,
    file: File,
) {
    // Find a large enough space from the front iff possible
    // Keep a stack of unused Usages to restore once done
    let mut stack = Vec::new();
    loop {
        let next = usage.pop_front();
        match next {
            // Found a space
            Some(SPACE(space)) if space.size >= file.size => {
                // File now in its final position
                files.push(File::new(file.id, space.pos, file.size));
                if space.size > file.size {
                    // Return remaining space
                    usage.push_front(DiskUsage::new_space(
                        space.pos + file.size as usize,
                        space.size - file.size,
                    ))
                }
                break;
            }
            Some(usage) => stack.push(usage),
            // File won't fit, leave it in place
            None => {
                files.push(file);
                break;
            }
        }
    }

    while let Some(rewind) = stack.pop() {
        usage.push_front(rewind);
    }
}

/// The common logic for reading from both ends of the disk usage map, outputting files as their final position
/// becomes known.
fn pack_files(disk_map: &VecDeque<DiskUsage>, space_filler: SpaceFiller) -> Vec<File> {
    let mut files = Vec::new();
    let mut usage = disk_map.clone();

    while let Some(&front) = usage.front() {
        match front {
            // A file at the front is in its final position
            FILE(file) => {
                usage.pop_front();
                files.push(file);
            }
            // A Space should be filled from the back
            SPACE(space) => {
                if let Some(FILE(file)) = usage.pop_back() {
                    space_filler(&mut files, &mut usage, space, file);
                }
                // Else go try the outer loop again -
                // - Some(space) has been consumed from the back
                // - None will also exit the outer loop
            }
        }
    }

    files
}

/// Reduces the list of packed files to the puzzle solution
fn calculate_checksum(disk_map: &VecDeque<DiskUsage>, space_filler: SpaceFiller) -> usize {
    pack_files(disk_map, space_filler)
        .iter()
        .flat_map(
            |&File {
                 id,
                 pos: start,
                 size,
             }| (start..(start + size as usize)).map(move |pos| pos * id),
        )
        .sum()
}

#[cfg(test)]
mod tests {
    use crate::day_9::*;
    use crate::helpers::test::assert_contains_in_any_order;
    
    fn example_disk() -> VecDeque<DiskUsage> {
        vec![
            DiskUsage::new_file(0, 0, 2),
            DiskUsage::new_space(2, 3),
            DiskUsage::new_file(1, 5, 3),
            DiskUsage::new_space(8, 3),
            DiskUsage::new_file(2, 11, 1),
            DiskUsage::new_space(12, 3),
            DiskUsage::new_file(3, 15, 3),
            DiskUsage::new_space(18, 1),
            DiskUsage::new_file(4, 19, 2),
            DiskUsage::new_space(21, 1),
            DiskUsage::new_file(5, 22, 4),
            DiskUsage::new_space(26, 1),
            DiskUsage::new_file(6, 27, 4),
            DiskUsage::new_space(31, 1),
            DiskUsage::new_file(7, 32, 3),
            DiskUsage::new_space(35, 1),
            DiskUsage::new_file(8, 36, 4),
            DiskUsage::new_file(9, 40, 2),
        ]
        .into_iter()
        .collect()
    }

    #[test]
    fn can_parse_input() {
        let input = "2333133121414131402".to_string();

        assert_eq!(parse_input(&input), example_disk());
    }

    #[test]
    fn can_generate_fragmented_blocks() {
        assert_eq!(
            pack_files(&example_disk(), fill_space_with_fragmentation),
            vec![
                File::new(0, 0, 2),
                File::new(9, 2, 2),
                File::new(8, 4, 1),
                File::new(1, 5, 3),
                File::new(8, 8, 3),
                File::new(2, 11, 1),
                File::new(7, 12, 3),
                File::new(3, 15, 3),
                File::new(6, 18, 1),
                File::new(4, 19, 2),
                File::new(6, 21, 1),
                File::new(5, 22, 4),
                File::new(6, 26, 1),
                File::new(6, 27, 1),
            ]
        );
    }

    #[test]
    fn can_calculate_checksum_fragmented() {
        assert_eq!(
            calculate_checksum(&example_disk(), fill_space_with_fragmentation),
            1928
        )
    }

    #[test]
    fn can_generate_unfragmented_blocks() {
        assert_contains_in_any_order(
            pack_files(&example_disk(), fill_space_without_fragmentation),
            vec![
                File::new(0, 0, 2),
                File::new(9, 2, 2),
                File::new(2, 4, 1),
                File::new(1, 5, 3),
                File::new(7, 8, 3),
                File::new(4, 12, 2),
                File::new(3, 15, 3),
                File::new(5, 22, 4),
                File::new(6, 27, 4),
                File::new(8, 36, 4),
            ],
        )
    }

    #[test]
    fn can_calculate_checksum_unfragmented() {
        assert_eq!(
            calculate_checksum(&example_disk(), fill_space_without_fragmentation),
            2858
        )
    }
}