advent_of_code_2024/day_21.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
//! This is my solution for [Advent of Code - Day 21: _Keypad Conundrum_](https://adventofcode.com/2024/day/21)
//!
//! [`parse_input`] Turns the codes into their value and sequence of [`NumericButton`] presses. [`DirectionalButton`]
//! also exists to represent the keypads that move the robots rather than unlock the door. [`KeyPadButton`] is a sort
//! of meta type that generically adds the [`A`] for enter button to each keypad.
//!
//! [`KeyPad`] Holds most of the business logic, with [`keypad_chain`] being used to create the chains specific to
//! each part.
//!
//! [`Keys`] is the trait that provides how each keypad is laid out, and is implemented for each of the input button
//! types.
//!
//! [`KeyPad::key_presses`] solves the puzzle, given a chain of the relevant length of that part. It delegates the
//! movement between key presses to [`KeyPad::presses_for_pair`], which in turn generates the possible paths between
//! the pair, and recurses to the next controller in the chain using [`KeyPad::controller_presses`]. To make part 2
//! run quickly, [`KeyPad::presses_for_pair`] caches the result for each pair at that level.
use crate::day_21::DirectionalButton::*;
use crate::day_21::KeyPadButton::*;
use crate::day_21::NumericButton::*;
use itertools::{chain, Itertools};
use std::cell::RefCell;
use std::collections::HashMap;
use std::fs;
use std::hash::Hash;
use std::iter::once;
use std::rc::Rc;
/// The entry point for running the solutions with the 'real' puzzle input.
///
/// - The puzzle input is expected to be at `<project_root>/res/day-21-input`
/// - It is expected this will be called by [`super::main()`] when the user elects to run day 21.
pub fn run() {
let contents = fs::read_to_string("res/day-21-input.txt").expect("Failed to read file");
let codes = parse_input(&contents);
println!(
"To open the first door takes {} key presses",
sum_complexities(&codes, &mut keypad_chain(2))
);
println!(
"To open the second door takes {} key presses",
sum_complexities(&codes, &mut keypad_chain(25))
);
}
/// The input buttons on pad that controls robot arm movements
#[derive(Eq, PartialEq, Debug, Copy, Clone, Hash)]
enum DirectionalButton {
Up,
Down,
Left,
Right,
}
/// The input buttons on pad for entering numeric door unlock codes
#[derive(Eq, PartialEq, Debug, Copy, Clone, Hash)]
enum NumericButton {
Zero,
One,
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
}
impl TryFrom<char> for NumericButton {
type Error = ();
fn try_from(value: char) -> Result<Self, Self::Error> {
match value {
'0' => Ok(Zero),
'1' => Ok(One),
'2' => Ok(Two),
'3' => Ok(Three),
'4' => Ok(Four),
'5' => Ok(Five),
'6' => Ok(Six),
'7' => Ok(Seven),
'8' => Ok(Eight),
'9' => Ok(Nine),
_ => Err(()),
}
}
}
/// A meta-type for including the enter button on each keypad type
#[derive(Eq, PartialEq, Debug, Copy, Clone, Hash)]
enum KeyPadButton<T> {
Input(T),
A,
}
/// Encapsulates the layout of each set of keypad buttons
trait Keys<T> {
/// What is the coordinate of a given button
fn coordinate(key: KeyPadButton<T>) -> Coordinates;
/// Is this coordinate a valid button on this keypad
fn contains(coord: &Coordinates) -> bool;
}
impl Keys<NumericButton> for NumericButton {
fn coordinate(key: KeyPadButton<NumericButton>) -> Coordinates {
match key {
Input(Zero) => (3, 1),
Input(One) => (2, 0),
Input(Two) => (2, 1),
Input(Three) => (2, 2),
Input(Four) => (1, 0),
Input(Five) => (1, 1),
Input(Six) => (1, 2),
Input(Seven) => (0, 0),
Input(Eight) => (0, 1),
Input(Nine) => (0, 2),
A => (3, 2),
}
}
fn contains(coord: &Coordinates) -> bool {
match coord {
&(3, 0) => false,
&(r, c) if r <= 3 && c <= 2 => true,
_ => false,
}
}
}
impl Keys<DirectionalButton> for DirectionalButton {
fn coordinate(key: KeyPadButton<DirectionalButton>) -> Coordinates {
match key {
Input(Up) => (0, 1),
Input(Right) => (1, 2),
Input(Down) => (1, 1),
Input(Left) => (1, 0),
A => (0, 2),
}
}
fn contains(coord: &Coordinates) -> bool {
match coord {
&(0, 0) => false,
&(r, c) if r <= 1 && c <= 2 => true,
_ => false,
}
}
}
type Coordinates = (u8, u8);
/// Helpers for moving within a keypad
trait CoordinateExtensions: Sized {
fn apply_move(&self, mv: &DirectionalButton) -> Option<Self>;
}
impl CoordinateExtensions for Coordinates {
/// The coordinate after pressing a specific direction key
fn apply_move(&self, mv: &DirectionalButton) -> Option<Self> {
let (r, c) = self;
let (dr, dc) = match mv {
Up => (-1, 0),
Right => (0, 1),
Down => (1, 0),
Left => (0, -1),
};
let r1 = r.checked_add_signed(dr);
let c1 = c.checked_add_signed(dc);
r1.zip(c1)
}
}
/// Encodes a KeyPad. The layout comes from the button input type (T)(
struct KeyPad<T> {
controller: Option<Rc<RefCell<KeyPad<DirectionalButton>>>>,
cache: HashMap<(KeyPadButton<T>, KeyPadButton<T>), usize>,
}
impl<T> KeyPad<T>
where
T: Keys<T> + Copy + Clone + Eq + Hash,
{
/// A new [`KeyPad`] that expects a person to be pressing the keys
fn direct_entry() -> KeyPad<T> {
KeyPad::<T> {
controller: None::<Rc<RefCell<KeyPad<DirectionalButton>>>>,
cache: HashMap::new(),
}
}
/// A new [`KeyPad`] that expects a robot arm controlled by another pad to be pressing the keys
fn controlled_by(controller: KeyPad<DirectionalButton>) -> KeyPad<T> {
KeyPad::<T> {
controller: Some(Rc::new(RefCell::new(controller))),
cache: HashMap::new(),
}
}
/// Given positive and negative unit length movement keys for an axis, and a start and end point on that axis,
/// return the list of movements to move from the start to the end.
fn repeat(
positive: DirectionalButton,
negative: DirectionalButton,
a: u8,
b: u8,
) -> Vec<DirectionalButton> {
let char = if a < b { positive } else { negative };
[char].repeat(a.abs_diff(b) as usize)
}
/// Given a list of moves, follow them and check it doesn't leave the key pad
fn check_moves(moves: &Vec<&DirectionalButton>, start: &Coordinates) -> bool {
let mut position = start.clone();
for &mv in moves {
match position.apply_move(mv) {
Some(new_pos) => {
if !T::contains(&new_pos) {
return false;
}
position = new_pos
}
None => return false,
}
}
true
}
/// Given a list of moves, pass those up the keypad chain to get the total key presses needed for that move.
fn controller_presses(&mut self, moves: Vec<&DirectionalButton>) -> usize {
match self.controller.clone() {
Some(keypad) => {
let buttons = moves.into_iter().cloned().collect();
keypad.borrow_mut().key_presses(&buttons)
}
None => moves.len() + 1, // and A,
}
}
/// Work out the valid paths between two keys and recurse the required movements up the keypad chain to find the
/// route with the shortest number of presses. The result is cached for performance.
fn presses_for_pair(&mut self, (a, b): (KeyPadButton<T>, KeyPadButton<T>)) -> usize {
if let Some(&result) = self.cache.get(&(a, b)) {
return result;
}
let (ra, ca) = T::coordinate(a);
let (rb, cb) = T::coordinate(b);
let moves: Vec<DirectionalButton> = chain(
Self::repeat(Down, Up, ra, rb),
Self::repeat(Right, Left, ca, cb),
)
.collect();
let count = moves
.iter()
.permutations(moves.len())
.filter(|moves| Self::check_moves(moves, &(ra, ca)))
.map(|moves| self.controller_presses(moves))
.min()
.expect("Failed to find safe route {a} -> {b}");
self.cache.insert((a, b), count);
count
}
/// Solves the puzzle for this keypad chain, return the number of key presses needed at the top of the keypad
/// chain to press the expected list of keys on this keypad.
fn key_presses(&mut self, keys: &Vec<T>) -> usize {
once(A)
.chain(keys.iter().map(|&key| Input(key)))
.chain(once(A))
.tuple_windows()
.map(|pair| self.presses_for_pair(pair))
.sum()
}
}
/// Encode a code as the list of numeric button presses needed. The terminating `A` is assumed. Also parse the code
/// as a number for complexity calculation
#[derive(Eq, PartialEq, Debug)]
struct Code {
buttons: Vec<NumericButton>,
value: usize,
}
/// Given a line of puzzle input parse it as a code.
fn parse_code(code: &str) -> Code {
let buttons = code.chars().flat_map(NumericButton::try_from).collect();
let value = code
.chars()
.filter(|c| c.is_digit(10))
.join("")
.parse()
.unwrap();
Code { buttons, value }
}
/// Turn the puzzle input into one code per line
fn parse_input(input: &String) -> Vec<Code> {
input.lines().map(parse_code).collect()
}
/// Build a chain of keypads controlled by robot arms of the provided size. This will be 2 for part 1, and 25 for
/// part 2.
fn keypad_chain(length: usize) -> KeyPad<NumericButton> {
let chain = (1..length).fold(KeyPad::direct_entry(), |prev, _| {
KeyPad::controlled_by(prev)
});
KeyPad::controlled_by(chain)
}
/// Map the puzzles codes to their complexity and sum to get the puzzle solution
fn sum_complexities(codes: &Vec<Code>, door: &mut KeyPad<NumericButton>) -> usize {
codes
.iter()
.map(|code| door.key_presses(&code.buttons) * code.value)
.sum()
}
#[cfg(test)]
mod tests {
use crate::day_21::*;
fn example_codes() -> Vec<Code> {
vec![
Code {
buttons: vec![Zero, Two, Nine],
value: 29,
},
Code {
buttons: vec![Nine, Eight, Zero],
value: 980,
},
Code {
buttons: vec![One, Seven, Nine],
value: 179,
},
Code {
buttons: vec![Four, Five, Six],
value: 456,
},
Code {
buttons: vec![Three, Seven, Nine],
value: 379,
},
]
}
#[test]
fn can_parse_input() {
let input = "029A
980A
179A
456A
379A
"
.to_string();
assert_eq!(parse_input(&input), example_codes());
}
#[test]
fn can_count_key_presses() {
let mut key_pad = keypad_chain(2);
assert_eq!(key_pad.key_presses(&example_codes()[0].buttons), 68);
assert_eq!(key_pad.key_presses(&example_codes()[1].buttons), 60);
assert_eq!(key_pad.key_presses(&example_codes()[2].buttons), 68);
assert_eq!(key_pad.key_presses(&example_codes()[3].buttons), 64);
assert_eq!(key_pad.key_presses(&example_codes()[4].buttons), 64);
}
#[test]
fn can_sum_complexities() {
assert_eq!(
sum_complexities(&example_codes(), &mut keypad_chain(2)),
126384
)
}
}