advent_of_code_2024/day_19.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
//! This is my solution for [Advent of Code - Day 19: _Linen Layout_](https://adventofcode.com/2024/day/19)
//!
//! [`parse_input`] uses [`parse_patterns`] to turn the patterns into a tree of [`PatternTreeNode`]s by repeatedly
//! using [`PatternTreeNode::insert`], and the designs as a list of lists of [`Colour`].
//!
//! [`PatternTreeNode::count_matches`] solves part one, calling [`PatternTreeNode::matches`] for each design.
//!
//! [`PatternTreeNode::sum_combinations`] solves part one, calling [`PatternTreeNode::combinations`] for each design.
use std::cell::RefCell;
use std::collections::HashMap;
use std::fs;
use std::rc::Rc;
use Colour::*;
/// The entry point for running the solutions with the 'real' puzzle input.
///
/// - The puzzle input is expected to be at `<project_root>/res/day-19-input`
/// - It is expected this will be called by [`super::main()`] when the user elects to run day 19.
pub fn run() {
let contents = fs::read_to_string("res/day-19-input.txt").expect("Failed to read file");
let (pattern_tree, designs) = parse_input(&contents);
println!(
"{} of the designs can be made",
pattern_tree.count_matches(&designs)
);
println!(
"{} combinations of towels can be made into the designs",
pattern_tree.sum_combinations(&designs)
);
}
/// An enum for the possible towel colours
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
enum Colour {
White,
Blue,
Black,
Red,
Green,
}
impl From<char> for Colour {
fn from(value: char) -> Self {
match value {
'w' => White,
'u' => Blue,
'b' => Black,
'r' => Red,
'g' => Green,
_ => unreachable!(),
}
}
}
/// The reference used by a node to refer to its children, and to hold a ref back to the root node in the recursive
/// matchers.
type PatternTreeNodeRef = Rc<RefCell<PatternTreeNode>>;
/// A tree with branching factor of 5 for encoding the Set of all the possible patterns
#[derive(Debug, Eq, PartialEq, Clone)]
struct PatternTreeNode {
is_match: bool,
w: Option<PatternTreeNodeRef>,
u: Option<PatternTreeNodeRef>,
b: Option<PatternTreeNodeRef>,
r: Option<PatternTreeNodeRef>,
g: Option<PatternTreeNodeRef>,
}
impl PatternTreeNode {
/// Create an empty node
fn new() -> Self {
PatternTreeNode {
is_match: false,
w: None,
u: None,
b: None,
r: None,
g: None,
}
}
/// helper for getting a reference to a node
fn into_ref(self) -> PatternTreeNodeRef {
Rc::new(RefCell::new(self))
}
/// Helper to map a given colour to its child node if that exists
fn get_node(&self, colour: &Colour) -> Option<PatternTreeNodeRef> {
match colour {
White => self.w.clone(),
Blue => self.u.clone(),
Black => self.b.clone(),
Red => self.r.clone(),
Green => self.g.clone(),
}
}
/// Get a reference to the node for a colour, creating it if it doesn't exist
fn upsert_node(&mut self, colour: &Colour) -> PatternTreeNodeRef {
(match colour {
White => &mut self.w,
Blue => &mut self.u,
Black => &mut self.b,
Red => &mut self.r,
Green => &mut self.g,
})
.get_or_insert_with(|| PatternTreeNode::new().into_ref())
.clone()
}
/// Recursively insert a pattern into the tree, creating the required nodes and marking the final node as
/// terminating a pattern
fn insert(&mut self, mut colours: impl Iterator<Item = Colour>) {
match colours.next() {
Some(colour) => self.upsert_node(&colour).borrow_mut().insert(colours),
None => self.is_match = true,
}
}
/// Does this tree match the design? he inner recursive function walks the tree matching the characters in the
/// design, jumping back to the root node when patterns are matched
fn matches(&self, design: &Vec<Colour>) -> bool {
fn matches_impl(
node_ref: PatternTreeNodeRef,
design: &Vec<Colour>,
start: usize,
root: &PatternTreeNodeRef,
) -> bool {
let node = node_ref.borrow();
if node.is_match && matches_impl(root.clone(), design, start, root) {
return true;
}
if start >= design.len() {
return &node_ref == root;
}
design
.get(start)
.and_then(|colour| node.get_node(colour))
.is_some_and(|next_node_ref| matches_impl(next_node_ref, design, start + 1, root))
}
let root_ref = self.clone().into_ref();
matches_impl(root_ref.clone(), design, 0, &root_ref)
}
/// Solves part 1 by counting the designs that the pattern tree can match
fn count_matches(&self, designs: &Vec<Vec<Colour>>) -> usize {
designs
.iter()
.filter(|&design| self.matches(design))
.count()
}
/// Similar to [`Self::matches`], but doesn't bail early when the root node matches the rest of the pattern,
/// instead increments a count. Caches combinations that start at the root node for performance.
fn combinations(&self, design: &Vec<Colour>) -> usize {
fn combinations_impl(
node_ref: PatternTreeNodeRef,
design: &Vec<Colour>,
start: usize,
root: &PatternTreeNodeRef,
cache: &mut HashMap<usize, usize>,
) -> usize {
let node = node_ref.borrow();
let mut count = 0;
if node.is_match {
if let Some(sub_count) = cache.get(&start) {
count += sub_count;
} else {
let sub_count = combinations_impl(root.clone(), design, start, root, cache);
cache.insert(start, sub_count);
count += sub_count;
}
} else if start >= design.len() {
return if &node_ref == root { 1 } else { 0 };
}
count += design
.get(start)
.and_then(|colour| node.get_node(colour))
.map(|next_node_ref| {
combinations_impl(next_node_ref, design, start + 1, root, cache)
})
.unwrap_or(0);
count
}
let root_ref = self.clone().into_ref();
let mut cache = HashMap::new();
combinations_impl(root_ref.clone(), design, 0, &root_ref, &mut cache)
}
/// Solves part, by calling [`Self::combinations`] for all designs and summing the result,
fn sum_combinations(&self, designs: &Vec<Vec<Colour>>) -> usize {
designs.iter().map(|design| self.combinations(design)).sum()
}
}
/// Turn the list of patterns into a tree that matches them. expected format e.g. `r, wr, b, g, bwu, rb, gb, br`
fn parse_patterns(input: &str) -> PatternTreeNode {
let mut root = PatternTreeNode::new();
input
.split(", ")
.for_each(|pattern| root.insert(pattern.chars().map(|c| c.into())));
root
}
/// Turn the list of designs to match into the internal representation, one design per line.
fn parse_designs(input: &str) -> Vec<Vec<Colour>> {
input
.lines()
.map(|line| line.chars().map(|c| c.into()).collect())
.collect()
}
/// Split the input file into patterns and design on a blank line, and hand each to their parsing function
fn parse_input(input: &String) -> (PatternTreeNode, Vec<Vec<Colour>>) {
let (patterns, designs) = input.split_once("\n\n").unwrap();
(parse_patterns(patterns), parse_designs(designs))
}
#[cfg(test)]
mod tests {
use crate::day_19::*;
fn example_pattern_tree() -> PatternTreeNode {
let mut root = PatternTreeNode::new();
let mut w = PatternTreeNode::new();
let mut b = PatternTreeNode::new();
let mut r = PatternTreeNode::new();
let mut g = PatternTreeNode::new();
// r
r.is_match = true;
// wr
let mut wr = PatternTreeNode::new();
wr.is_match = true;
w.r = Some(wr.into_ref());
// b
b.is_match = true;
// g
g.is_match = true;
// bwu
let mut bw = PatternTreeNode::new();
let mut bwu = PatternTreeNode::new();
bwu.is_match = true;
bw.u = Some(bwu.into_ref());
b.w = Some(bw.into_ref());
// rb
let mut rb = PatternTreeNode::new();
rb.is_match = true;
r.b = Some(rb.into_ref());
// gb
let mut gb = PatternTreeNode::new();
gb.is_match = true;
g.b = Some(gb.into_ref());
// br
let mut br = PatternTreeNode::new();
br.is_match = true;
b.r = Some(br.into_ref());
root.w = Some(w.into_ref());
root.b = Some(b.into_ref());
root.r = Some(r.into_ref());
root.g = Some(g.into_ref());
root
}
fn example_designs() -> Vec<Vec<Colour>> {
vec![
vec![Black, Red, White, Red, Red],
vec![Black, Green, Green, Red],
vec![Green, Black, Black, Red],
vec![Red, Red, Black, Green, Black, Red],
vec![Blue, Black, White, Blue],
vec![Black, White, Blue, Red, Red, Green],
vec![Black, Red, Green, Red],
vec![Black, Black, Red, Green, White, Black],
]
}
//noinspection SpellCheckingInspection
#[test]
fn can_parse_input() {
let input = "r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
"
.to_string();
let (patterns, designs) = parse_input(&input);
assert_eq!(patterns, example_pattern_tree());
assert_eq!(designs, example_designs());
}
//noinspection SpellCheckingInspection
#[test]
fn can_match_pattern() {
let root = example_pattern_tree();
// brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
assert_eq!(root.matches(&vec![Black, Red, White, Red, Red]), true);
// bggr can be made with a b towel, two g towels, and then an r towel.
assert_eq!(root.matches(&vec![Black, Green, Green, Red]), true);
// gbbr can be made with a gb towel and then a br towel.
assert_eq!(root.matches(&vec![Green, Black, Black, Red]), true);
// rrbgbr can be made with r, rb, g, and br.
assert_eq!(
root.matches(&vec![Red, Red, Black, Green, Black, Red]),
true
);
// ubwu is impossible.
assert_eq!(root.matches(&vec![Blue, Black, White, Blue]), false);
// bwurrg can be made with bwu, r, r, and g.
assert_eq!(
root.matches(&vec![Black, White, Blue, Red, Red, Green]),
true
);
// brgr can be made with br, g, and r.
assert_eq!(root.matches(&vec![Black, Red, Green, Red]), true);
// bbrgwb is impossible.
assert_eq!(
root.matches(&vec![Black, Black, Red, Green, White, Black]),
false
);
}
#[test]
fn can_count_matches() {
assert_eq!(example_pattern_tree().count_matches(&example_designs()), 6)
}
//noinspection SpellCheckingInspection
#[test]
fn can_count_combinations() {
let root = example_pattern_tree();
// brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
assert_eq!(root.combinations(&vec![Black, Red, White, Red, Red]), 2);
// bggr can be made with a b towel, two g towels, and then an r towel.
assert_eq!(root.combinations(&vec![Black, Green, Green, Red]), 1);
// gbbr can be made with a gb towel and then a br towel.
assert_eq!(root.combinations(&vec![Green, Black, Black, Red]), 4);
// rrbgbr can be made with r, rb, g, and br.
assert_eq!(
root.combinations(&vec![Red, Red, Black, Green, Black, Red]),
6
);
// ubwu is impossible.
assert_eq!(root.combinations(&vec![Blue, Black, White, Blue]), 0);
// bwurrg can be made with bwu, r, r, and g.
assert_eq!(
root.combinations(&vec![Black, White, Blue, Red, Red, Green]),
1
);
// brgr can be made with br, g, and r.
assert_eq!(root.combinations(&vec![Black, Red, Green, Red]), 2);
// bbrgwb is impossible.
assert_eq!(
root.combinations(&vec![Black, Black, Red, Green, White, Black]),
0
);
}
#[test]
fn can_sum_combinations() {
assert_eq!(
example_pattern_tree().sum_combinations(&example_designs()),
16
)
}
}