advent_of_code_2024/
day_13.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//! This is my solution for [Advent of Code - Day 13: _Claw Contraption_](https://adventofcode.com/2024/day/13)
//!
//! [`parse_input`] Uses [`Machine::from_str`] and [`Coords::from_str`] to build the input into a list of [`Machine`]s.
//!
//! [`sum_prize_costs`] solves both parts, taking an offset to be set to 10_000_000_000_000 for part 2. This uses
//! [`Machine::get_cost_for_prize`], and [`Machine::get_presses`] to solve the machine's equations.

use std::fs;
use std::str::FromStr;

/// The entry point for running the solutions with the 'real' puzzle input.
///
/// - The puzzle input is expected to be at `<project_root>/res/day-13-input`
/// - It is expected this will be called by [`super::main()`] when the user elects to run day 13.
pub fn run() {
    let contents = fs::read_to_string("res/day-13-input.txt").expect("Failed to read file");
    let machines = parse_input(&contents);

    println!(
        "The total cost for available prizes is {}",
        sum_prize_costs(&machines, 0)
    );

    println!(
        "The total cost for available prizes with offset is {}",
        sum_prize_costs(&machines, 10_000_000_000_000)
    );
}

/// A pair of 2d coordinates. Used for the button press delta's and the prize target
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
struct Coords {
    x: i64,
    y: i64,
}

impl FromStr for Coords {
    type Err = ();

    /// Picks two comma separated numbers out of a line of machine specification, ignoring other characters on the line.
    ///
    /// The following lines parse to (94,34), (22, 67), and (8400, 5400).
    ///
    /// ```text
    /// Button A: X+94, Y+34
    /// Button B: X+22, Y+67
    /// Prize: X=8400, Y=5400
    /// ```
    fn from_str(line: &str) -> Result<Self, Self::Err> {
        fn parse_part(part: &str) -> i64 {
            part.chars()
                .flat_map(|c| c.to_digit(10))
                .fold(0, |acc, digit| 10 * acc + digit as i64)
        }

        if let Some((_, coords)) = line.split_once(": ") {
            if let Some((x_part, y_part)) = coords.split_once(", ") {
                return Ok(Coords {
                    x: parse_part(x_part),
                    y: parse_part(y_part),
                });
            }
        }

        Err(())
    }
}

#[derive(Eq, PartialEq, Debug, Copy, Clone)]
struct Machine {
    a: Coords,
    b: Coords,
    prize: Coords,
}

impl FromStr for Machine {
    type Err = ();

    /// Parse a block of machine specification, taking:
    /// * The first line as the delta for button A
    /// * The second line as the delta for button B
    /// * The third line as the position of the prize
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let mut lines = s.lines();

        let a = lines.next().and_then(|line| line.parse().ok());
        let b = lines.next().and_then(|line| line.parse().ok());
        let prize = lines.next().and_then(|line| line.parse().ok());

        if let (Some(a), Some(b), Some(prize)) = (a, b, prize) {
            Ok(Machine { a, b, prize })
        } else {
            Err(())
        }
    }
}

impl Machine {
    /// For a machine, solve the pair of linear equations it represents (one in `x` and one in `y`). Due to integer
    /// division, the results may be rounded. Check they actually solve the equation, returning them if they do,
    /// otherwise return `None` as the prize isn't reachable with a whole number of presses.
    ///
    /// See also [Cramer's rule](https://en.wikipedia.org/wiki/Cramer%27s_rule).
    fn get_presses(&self, offset: i64) -> Option<(i64, i64)> {
        let Machine { a, b, prize } = self;

        let nb = (a.y * (prize.x + offset) - a.x * (prize.y + offset)) / (a.y * b.x - a.x * b.y);
        let na = (prize.x + offset - b.x * nb) / a.x;

        // check that a and b have not been rounded
        if na * a.x + nb * b.x == prize.x + offset && na * a.y + nb * b.y == prize.y + offset {
            Some((na, nb))
        } else {
            None
        }
    }

    /// Map the number of button presses for a prize, to its cost in tokens
    fn get_cost_for_prize(&self, offset: i64) -> Option<i64> {
        self.get_presses(offset).map(|(a, b)| 3 * a + b)
    }
}

/// Turn the puzzle input into a list of machines by parsing each block separated by a blank line
fn parse_input(input: &String) -> Vec<Machine> {
    input
        .split("\n\n")
        .map(|block| block.parse().unwrap())
        .collect()
}

/// Use [`Machine::get_cost_for_prize`] to get the total cost over all valid machines
fn sum_prize_costs(machines: &Vec<Machine>, offset: i64) -> i64 {
    machines
        .iter()
        .flat_map(|machine| machine.get_cost_for_prize(offset))
        .sum()
}

#[cfg(test)]
mod tests {
    use crate::day_13::*;
    
    fn example_machines() -> Vec<Machine> {
        vec![
            Machine {
                a: Coords { x: 94, y: 34 },
                b: Coords { x: 22, y: 67 },
                prize: Coords { x: 8400, y: 5400 },
            },
            Machine {
                a: Coords { x: 26, y: 66 },
                b: Coords { x: 67, y: 21 },
                prize: Coords { x: 12748, y: 12176 },
            },
            Machine {
                a: Coords { x: 17, y: 86 },
                b: Coords { x: 84, y: 37 },
                prize: Coords { x: 7870, y: 6450 },
            },
            Machine {
                a: Coords { x: 69, y: 23 },
                b: Coords { x: 27, y: 71 },
                prize: Coords { x: 18641, y: 10279 },
            },
        ]
    }

    #[test]
    fn can_parse_input() {
        let input = "Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400

Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176

Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450

Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
"
        .to_string();

        assert_eq!(parse_input(&input), example_machines())
    }

    #[test]
    fn can_get_presses() {
        let machines = example_machines();

        assert_eq!(machines.get(0).unwrap().get_presses(0), Some((80, 40)));
        assert_eq!(machines.get(1).unwrap().get_presses(0), None);
        assert_eq!(machines.get(2).unwrap().get_presses(0), Some((38, 86)));
        assert_eq!(machines.get(3).unwrap().get_presses(0), None);
    }

    #[test]
    fn can_sum_costs() {
        assert_eq!(sum_prize_costs(&example_machines(), 0), 480);
        assert_eq!(
            sum_prize_costs(&example_machines(), 10_000_000_000_000),
            875318608908
        );
    }
}