advent_of_code_2024/
day_12.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//! This is my solution for [Advent of Code - Day 12: _Garden Groups_](https://adventofcode.com/2024/day/12)
//!
//! [`parse_input`] turns the input file it a [`Garden`] as a `Vec<Vec<char>>`.
//!
//! [`Garden::find_regions`] splits the Garden into [`Region`]s. [`Garden::total_fencing_cost`] solves part 1 using
//! the data collected when finding the regions. [`Garden::total_fencing_cost_with_discount`] solves part 2, using
//! [`Region::count_edges`] to find the unique edges in a region by counting corners in the perimeter.

use itertools::Itertools;
use std::collections::HashSet;
use std::{fs, usize};

/// The entry point for running the solutions with the 'real' puzzle input.
///
/// - The puzzle input is expected to be at `<project_root>/res/day-12-input`
/// - It is expected this will be called by [`super::main()`] when the user elects to run day 12.
pub fn run() {
    let contents = fs::read_to_string("res/day-12-input.txt").expect("Failed to read file");
    let garden = parse_input(&contents);

    println!("The total fencing cost is {}", garden.total_fencing_cost());
    println!(
        "The total discounted fencing cost is {}",
        garden.total_fencing_cost_with_discount()
    );
}

/// Coordinates of a plot within a [`Garden`]
type Plot = (usize, usize);

/// Implement deltas as a struct to allow some convenient consts and functions to be defined
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
struct Delta(isize, isize);

impl Delta {
    /// Move upwards
    const UP: Delta = Delta(-1, 0);
    /// Move rightwards
    const RIGHT: Delta = Delta(0, 1);
    /// Move downwards
    const DOWN: Delta = Delta(1, 0);
    /// Move leftwards
    const LEFT: Delta = Delta(0, -1);

    /// Combine two deltas
    fn add(&self, other: &Self) -> Self {
        Delta(self.0 + other.0, self.1 + other.1)
    }

    /// Get the coordinates of the plot after applying this delta to the provided plot. This will be None if either
    /// axis becomes negative
    fn apply_to(&self, (r, c): &Plot) -> Option<Plot> {
        r.checked_add_signed(self.0)
            .zip(c.checked_add_signed(self.1))
    }
}

/// Use to track which side of the current plot has the edge being followed when walking the perimeter
#[derive(Eq, PartialEq, Debug, Copy, Clone, Hash)]
enum Side {
    TOP,
    RIGHT,
    BOTTOM,
    LEFT,
}

impl Side {
    /// Given a facing parallel to the current edge, headed clockwise, the plot forwards and Side::left will be filled if
    /// the edge turns round a concave corner.
    fn convex_delta(&self) -> Delta {
        match self {
            Side::TOP => Delta::UP.add(&Delta::RIGHT),
            Side::RIGHT => Delta::RIGHT.add(&Delta::DOWN),
            Side::BOTTOM => Delta::DOWN.add(&Delta::LEFT),
            Side::LEFT => Delta::LEFT.add(&Delta::UP),
        }
    }

    /// Given a cell which potentially has an edge on this side, what is the delta to cross that edge, from inside
    /// the shape to outside
    fn cross_outwards_delta(&self) -> Delta {
        match self {
            Side::TOP => Delta::UP,
            Side::RIGHT => Delta::RIGHT,
            Side::BOTTOM => Delta::DOWN,
            Side::LEFT => Delta::LEFT,
        }
    }

    /// The facing parallel to this side, that walks the inside of that edge clockwise.
    fn straight_ahead_delta(&self) -> Delta {
        self.turn_clockwise().cross_outwards_delta()
    }

    /// The side clockwise of this one
    fn turn_clockwise(&self) -> Side {
        match self {
            Side::TOP => Side::RIGHT,
            Side::RIGHT => Side::BOTTOM,
            Side::BOTTOM => Side::LEFT,
            Side::LEFT => Side::TOP,
        }
    }
}

/// A region that is a set of orthogonally adjacent plots in a [`Garden`] with the same crop. It stores the plots and
/// number of units in the perimeter for use by [`Garden::total_fencing_cost`].
#[derive(Eq, PartialEq, Debug)]
struct Region {
    crop: char,
    plots: HashSet<Plot>,
    perimeter: HashSet<(Plot, Side)>,
}

impl Region {
    /// Initialise an empty region
    fn new(crop: char) -> Region {
        Region {
            crop,
            plots: HashSet::new(),
            perimeter: HashSet::new(),
        }
    }

    /// Helper for checking if plot is in the grid. Takes an `Option` to match [`Delta::apply_to`]
    fn contains(&self, plot: &Option<Plot>) -> bool {
        if let Some(coord) = plot {
            self.plots.iter().contains(coord)
        } else {
            false
        }
    }

    /// Given an edge on one side of a plot. Calculate if following that edge clockwise is a corner
    ///
    /// ```text
    ///     +---+
    ///     | A |
    /// +---+ - +
    /// | B | C |
    /// +---+---+
    /// ```
    ///
    /// There are only three cases:
    /// - Straight - no corner: The examples above are
    ///     - Following the Side::right of the shape from `A` to `C`.
    ///     - Following the Side::bottom of the shape from `C` to `B`.
    /// - Convex corner, e.g. Side::top B going to A
    /// - Concave corner which follow the Side::left and Side::top of A, Side::bottom and Side::left of B, and the Side::right of C.
    ///
    /// If the block straight-ahead is not set it's a concave corner. If it is set and the one ahead and to the Side::left
    /// is also set it's concave.
    fn check_for_corner(&self, plot: &Plot, side: &Side) -> bool {
        let next_convex = side.convex_delta().apply_to(&plot);
        let next_straight = side.straight_ahead_delta().apply_to(&plot);

        !self.contains(&next_straight) || self.contains(&next_convex)
    }

    /// For all the edges in the perimeter, check if they are followed by a corner
    fn count_edges(&self) -> usize {
        self.perimeter
            .iter()
            .filter(|(plot, side)| self.check_for_corner(plot, &side))
            .count()
    }
}

/// A grid of plots containing regions of different crops
#[derive(Eq, PartialEq, Debug)]
struct Garden {
    plots: Vec<Vec<char>>,
}

impl Garden {
    /// Get the contents of a given plot, None if the coordinates are outside the garden
    fn get(&self, (r, c): Plot) -> Option<char> {
        self.plots.get(r).and_then(|row| row.get(c).copied())
    }

    /// Do a modified bucket fill to determine the plots that make up the region that includes the starting plot. When
    /// an edge is encountered store the side of the plot it is on for later corner detection.
    fn walk_region(&self, start: Plot) -> Region {
        fn walk_region_iter(garden: &Garden, plot: Plot, region: &mut Region) {
            let crop = garden.get(plot).unwrap();

            if !region.plots.insert(plot) {
                // already visited
                return;
            }

            for side in [Side::TOP, Side::RIGHT, Side::BOTTOM, Side::LEFT] {
                match side
                    .cross_outwards_delta()
                    .apply_to(&plot)
                    .and_then(|next_plot| Some(next_plot).zip(garden.get(next_plot)))
                {
                    Some((next_plot, next_crop)) if next_crop == crop => {
                        walk_region_iter(garden, next_plot, region)
                    }
                    _ => {
                        region.perimeter.insert((plot, side));
                    }
                }
            }
        }

        let mut region = Region::new(self.get(start).unwrap());
        walk_region_iter(self, start, &mut region);
        region
    }

    /// Iterate over each plots' coordinates in the garden
    fn iter_plots<'a>(&'a self) -> impl Iterator<Item = Plot> + 'a {
        self.plots
            .iter()
            .enumerate()
            .flat_map(|(r, row)| row.iter().enumerate().map(move |(c, _)| (r, c)))
    }

    /// Return all the distinct crop regions in the garden
    fn find_regions(&self) -> Vec<Region> {
        let mut visited: HashSet<Plot> = HashSet::new();
        let mut regions = Vec::new();

        for (r, c) in self.iter_plots() {
            if !visited.contains(&(r, c)) {
                let region = self.walk_region((r, c));
                visited.extend(&region.plots);
                regions.push(region);
            }
        }

        regions
    }

    /// The total cost to fence all the regions in the garden
    fn total_fencing_cost(&self) -> usize {
        self.find_regions()
            .iter()
            .map(|region| region.plots.len() * region.perimeter.len())
            .sum()
    }

    /// The total cost to fence all the regions in the garden after applying the "bulk discount"
    fn total_fencing_cost_with_discount(&self) -> usize {
        self.find_regions()
            .iter()
            .map(|region| region.plots.len() * region.count_edges())
            .sum()
    }
}

/// Parse a text grid into a [`Garden`]
fn parse_input(input: &String) -> Garden {
    Garden {
        plots: input.lines().map(|line| line.chars().collect()).collect(),
    }
}

#[cfg(test)]
mod tests {
    use crate::day_12::*;
    use crate::helpers::test::assert_contains_in_any_order;
    
    fn example_garden() -> Garden {
        Garden {
            plots: vec![
                vec!['A', 'A', 'A', 'A'],
                vec!['B', 'B', 'C', 'D'],
                vec!['B', 'B', 'C', 'C'],
                vec!['E', 'E', 'E', 'C'],
            ],
        }
    }

    //noinspection SpellCheckingInspection
    fn enclave_example() -> Garden {
        parse_input(
            &"OOOOO
OXOXO
OOOOO
OXOXO
OOOOO"
                .to_string(),
        )
    }

    //noinspection SpellCheckingInspection
    fn larger_example() -> Garden {
        parse_input(
            &"RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
"
            .to_string(),
        )
    }

    //noinspection SpellCheckingInspection
    #[test]
    fn can_parse_input() {
        let input = "AAAA
BBCD
BBCC
EEEC"
            .to_string();

        assert_eq!(parse_input(&input), example_garden())
    }

    fn region_a() -> Region {
        Region {
            crop: 'A',
            plots: vec![(0, 0), (0, 1), (0, 2), (0, 3)].into_iter().collect(),
            perimeter: vec![
                ((0, 0), Side::TOP),
                ((0, 0), Side::BOTTOM),
                ((0, 0), Side::LEFT),
                ((0, 1), Side::TOP),
                ((0, 1), Side::BOTTOM),
                ((0, 2), Side::TOP),
                ((0, 2), Side::BOTTOM),
                ((0, 3), Side::TOP),
                ((0, 3), Side::RIGHT),
                ((0, 3), Side::BOTTOM),
            ]
            .into_iter()
            .collect(),
        }
    }

    fn region_b() -> Region {
        Region {
            crop: 'B',
            plots: vec![(1, 0), (1, 1), (2, 0), (2, 1)].into_iter().collect(),
            perimeter: vec![
                ((1, 0), Side::TOP),
                ((1, 0), Side::LEFT),
                ((1, 1), Side::TOP),
                ((1, 1), Side::RIGHT),
                ((2, 0), Side::BOTTOM),
                ((2, 0), Side::LEFT),
                ((2, 1), Side::RIGHT),
                ((2, 1), Side::BOTTOM),
            ]
            .into_iter()
            .collect(),
        }
    }

    fn region_c() -> Region {
        Region {
            crop: 'C',
            plots: vec![(1, 2), (2, 2), (2, 3), (3, 3)].into_iter().collect(),
            perimeter: vec![
                ((1, 2), Side::RIGHT),
                ((1, 2), Side::LEFT),
                ((2, 2), Side::BOTTOM),
                ((2, 3), Side::RIGHT),
                ((3, 3), Side::BOTTOM),
                ((2, 3), Side::TOP),
                ((1, 2), Side::TOP),
                ((2, 2), Side::LEFT),
                ((3, 3), Side::RIGHT),
                ((3, 3), Side::LEFT),
            ]
            .into_iter()
            .collect(),
        }
    }

    fn region_d() -> Region {
        Region {
            crop: 'D',
            plots: vec![(1, 3)].into_iter().collect(),
            perimeter: vec![
                ((1, 3), Side::TOP),
                ((1, 3), Side::BOTTOM),
                ((1, 3), Side::LEFT),
                ((1, 3), Side::RIGHT),
            ]
            .into_iter()
            .collect(),
        }
    }

    fn region_e() -> Region {
        Region {
            crop: 'E',
            plots: vec![(3, 0), (3, 1), (3, 2)].into_iter().collect(),
            perimeter: vec![
                ((3, 1), Side::TOP),
                ((3, 2), Side::RIGHT),
                ((3, 2), Side::BOTTOM),
                ((3, 0), Side::TOP),
                ((3, 2), Side::TOP),
                ((3, 1), Side::BOTTOM),
                ((3, 0), Side::LEFT),
                ((3, 0), Side::BOTTOM),
            ]
            .into_iter()
            .collect(),
        }
    }

    #[test]
    fn can_find_region() {
        let garden = example_garden();

        assert_eq!(garden.walk_region((0, 0)), region_a());
        assert_eq!(garden.walk_region((1, 0)), region_b());
        assert_eq!(garden.walk_region((1, 2)), region_c());
        assert_eq!(garden.walk_region((1, 3)), region_d());
        assert_eq!(garden.walk_region((3, 0)), region_e());

        assert_contains_in_any_order(
            garden.find_regions(),
            vec![region_a(), region_b(), region_c(), region_d(), region_e()],
        );
    }

    #[test]
    fn can_calculate_costs() {
        assert_eq!(example_garden().total_fencing_cost(), 140);
        assert_eq!(enclave_example().total_fencing_cost(), 772);
        assert_eq!(larger_example().total_fencing_cost(), 1930);
    }

    #[test]
    fn can_count_edges() {
        let basic = Region {
            crop: 'A',
            plots: vec![(0, 0)].into_iter().collect(),
            perimeter: vec![
                ((0, 0), Side::TOP),
                ((0, 0), Side::RIGHT),
                ((0, 0), Side::BOTTOM),
                ((0, 0), Side::LEFT),
            ]
            .into_iter()
            .collect(),
        };
        assert_eq!(basic.count_edges(), 4);

        assert_eq!(region_a().count_edges(), 4);

        let regions = enclave_example().find_regions();
        let with_holes = regions.iter().find(|r| r.crop == 'O').unwrap();
        assert_eq!(with_holes.count_edges(), 20);
    }

    //noinspection SpellCheckingInspection
    #[test]
    fn can_calculate_costs_with_discount() {
        assert_eq!(example_garden().total_fencing_cost_with_discount(), 80);
        assert_eq!(enclave_example().total_fencing_cost_with_discount(), 436);
        assert_eq!(larger_example().total_fencing_cost_with_discount(), 1206);

        let example_e = parse_input(
            &"EEEEE
EXXXX
EEEEE
EXXXX
EEEEE
"
            .to_string(),
        );
        assert_eq!(example_e.total_fencing_cost_with_discount(), 236);

        let example_diagnonal = parse_input(
            &"AAAAAA
AAABBA
AAABBA
ABBAAA
ABBAAA
AAAAAA
"
            .to_string(),
        );
        assert_eq!(example_diagnonal.total_fencing_cost_with_discount(), 368);
    }
}