advent_of_code_2024/
day_10.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
//! This is my solution for [Advent of Code - Day 10: _Hoof It_](https://adventofcode.com/2024/day/10)
//!
//! [`parse_input`] turns the input file into a [`TopographicalMap`], where most of the logic is.
//!
//! [`TopographicalMap::total_score`] solves part 1, and [`TopographicalMap::total_rating`] solves part 2. Both use
//! [`TopographicalMap::trailheads`] to get a list of starting points, which are passed to
//! [`TopographicalMap::score_trailhead`] and [`TopographicalMap::rate_trailhead`] respectively. These both use
//! [`TopographicalMap::get_peaks`] to recursively walk the trail permutations and get a list of peaks that terminate
//! them. The score (part 1) gets the unique peaks before counting them, the rating counts the duplicates.

use itertools::Itertools;
use std::fs;

/// The entry point for running the solutions with the 'real' puzzle input.
///
/// - The puzzle input is expected to be at `<project_root>/res/day-10-input`
/// - It is expected this will be called by [`super::main()`] when the user elects to run day 10.
pub fn run() {
    let contents = fs::read_to_string("res/day-10-input.txt").expect("Failed to read file");
    let topographical_map = parse_input(&contents);

    println!("The trailhead score is {}", topographical_map.total_score());
    println!(
        "The trailhead rating is {}",
        topographical_map.total_rating()
    );
}

type Coordinate = (usize, usize);

/// Represent the map as a list of lists of cells. Most of the business logic for today's puzzles are functions
/// implemented on this struct.
#[derive(Eq, PartialEq, Debug)]
struct TopographicalMap {
    cells: Vec<Vec<u8>>,
}

impl TopographicalMap {
    /// Find all the lowest points (height `0`)
    fn trailheads(&self) -> Vec<Coordinate> {
        self.cells
            .iter()
            .enumerate()
            .flat_map(|(r, row)| {
                row.iter()
                    .enumerate()
                    .filter(|(_, cell)| cell == &&0)
                    .map(move |(c, _)| (r, c))
            })
            .collect()
    }

    /// Get the value at particular coordinates. Returns `None` if the coordinates are outside the bounds of the grid.
    fn get(&self, (r, c): Coordinate) -> Option<u8> {
        self.cells.get(r).and_then(|row| row.get(c).copied())
    }

    /// Return a list of coordinates and heights of orthogonally adjacent cells. Typically, there are four, but cells
    /// on the edge of the [`TopographicalMap`] will return fewer.
    fn adjacent(&self, (r, c): Coordinate) -> Vec<(Coordinate, u8)> {
        [
            r.checked_sub(1).zip(Some(c)),
            Some(r).zip(c.checked_add(1)),
            r.checked_add(1).zip(Some(c)),
            Some(r).zip(c.checked_sub(1)),
        ]
        .into_iter()
        .flatten()
        .flat_map(|coord| Some(coord).zip(self.get(coord)))
        .collect()
    }

    /// Find all valid routes to any peak (height `9`) from a given trailhead, returning the coordinates of those peaks.
    /// Where there are multiple routes up a peak they will be duplicates. A route is valid if each step increases by
    /// 1 unit.
    fn get_peaks(&self, cell: Coordinate) -> Vec<Coordinate> {
        match self.get(cell) {
            Some(9) => vec![cell],
            Some(n) => self
                .adjacent(cell)
                .iter()
                .filter(|(_, val)| *val == n + 1)
                .map(|(coords, _)| self.get_peaks(*coords))
                .reduce(|acc, val| [acc, val].concat())
                .unwrap_or(Vec::new()),
            None => Vec::new(),
        }
    }

    /// Get the count of unique peaks reachable from a given trailhead
    fn score_trailhead(&self, trailhead: Coordinate) -> usize {
        self.get_peaks(trailhead).iter().unique().count()
    }

    /// Solves part 1 - the sum of [`self.score_trailhead`] over all trailheads.
    fn total_score(&self) -> usize {
        self.trailheads()
            .iter()
            .map(|&trailhead| self.score_trailhead(trailhead))
            .sum()
    }

    /// Get the count of valid trails to peaks from a given trailhead
    fn rate_trailhead(&self, cell: Coordinate) -> usize {
        self.get_peaks(cell).iter().count()
    }

    /// Solves part 2 - the sum of [`self.rate_trailhead`] over all trailheads.
    fn total_rating(&self) -> usize {
        self.trailheads()
            .iter()
            .map(|&trailhead| self.rate_trailhead(trailhead))
            .sum()
    }
}

/// Parse the puzzle input into the internal representation
fn parse_input(input: &String) -> TopographicalMap {
    TopographicalMap {
        cells: input
            .lines()
            .map(|line| {
                line.chars()
                    .flat_map(|c| c.to_digit(10))
                    .map(|num| num as u8)
                    .collect()
            })
            .collect(),
    }
}

#[cfg(test)]
mod tests {
    use crate::day_10::*;
    
    fn small_example() -> TopographicalMap {
        TopographicalMap {
            cells: vec![
                vec![0, 1, 2, 3],
                vec![1, 2, 3, 4],
                vec![8, 7, 6, 5],
                vec![9, 8, 7, 6],
            ],
        }
    }

    #[test]
    fn can_parse_input() {
        let input = "0123
1234
8765
9876"
            .to_string();

        assert_eq!(
            parse_input(&input),
            TopographicalMap {
                cells: vec![
                    vec![0, 1, 2, 3],
                    vec![1, 2, 3, 4],
                    vec![8, 7, 6, 5],
                    vec![9, 8, 7, 6],
                ]
            }
        );
    }

    fn larger_example() -> TopographicalMap {
        parse_input(
            &"89010123
78121874
87430965
96549874
45678903
32019012
01329801
10456732"
                .to_string(),
        )
    }

    #[test]
    fn can_find_trailheads() {
        assert_eq!(small_example().trailheads(), vec![(0, 0)]);

        assert_eq!(
            larger_example().trailheads(),
            vec![
                (0, 2),
                (0, 4),
                (2, 4),
                (4, 6),
                (5, 2),
                (5, 5),
                (6, 0),
                (6, 6),
                (7, 1)
            ]
        )
    }

    #[test]
    fn can_find_adjacent_cells() {
        let topographical_map = small_example();

        assert_eq!(
            topographical_map.adjacent((1, 1)),
            vec![((0, 1), 1), ((1, 2), 3), ((2, 1), 7), ((1, 0), 1),]
        );

        assert_eq!(
            topographical_map.adjacent((0, 0)),
            vec![((0, 1), 1), ((1, 0), 1),]
        );

        assert_eq!(
            topographical_map.adjacent((3, 2)),
            vec![((2, 2), 6), ((3, 3), 6), ((3, 1), 8),]
        )
    }

    #[test]
    fn can_score_trailhead() {
        assert_eq!(larger_example().score_trailhead((0, 2)), 5);
    }

    #[test]
    fn can_score_topographical_map() {
        assert_eq!(larger_example().total_score(), 36);
    }

    #[test]
    fn can_rate_trailhead() {
        assert_eq!(larger_example().rate_trailhead((0, 2)), 20);
    }

    #[test]
    fn can_rate_topographical_map() {
        assert_eq!(larger_example().total_rating(), 81);
    }
}